electronic papers

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

trans-(Methanol)(methyldiphenylphosphine)bis(pentane-2,4-dionato)cobalt(III) hexafluorophosphate hydrate

Takayoshi Suzuki

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

Correspondence e-mail: suzuki@chem.sci.osaka-u.ac.jp

Received 2 February 2000 Accepted 23 February 2000

Data validation number: IUC0000049

The title compound $[Co(C_5H_7O_2)_2(C_{13}H_{13}P)(CH_4O)]$ - $PF_6 \cdot H_2O$, (I), which was converted from *trans*-[Co(acac)₂- $(PMePh_2)(H_2O)]PF_6$ (acac is pentane-2,4-dionato) by recrystallization from aqueous methanol, has been confirmed as have a coordinated methanol ligand. The molecular structure of the complex cation, trans-[Co(acac)₂(PMePh₂)(MeOH)]⁺, is similar to that of the above aqua complex found in the ClO₄ salt [Kashiwabara et al. (1995). Bull. Chem. Soc. Jpn, 68, 883-888]. The Co-O bond length for the coordinated methanol is 2.059 (3) Å. There is an intermolecular hydrogen bond between the OH group of the coordinated methanol and one of the O atoms of the acac ligands in an adjacent complex cation $[O5 \cdots O3' = 2.914 (4) \text{ Å}]$, giving a centrosymmetric dimeric dicationic complex.

Comment

This is, to my knowledge, the first X-ray crystallographic study of a non-organometallic cobalt(III) complex bearing a methanol ligand, although two organo–cobaloxime derivatives with a coordinated methanol ligand have been reported (Flohr *et al.*, 1978; Dreos *et al.*, 1995).

Experimental

The corresponding aqua complex, trans-[Co(acac)₂(PMePh₂)-(H₂O)]PF₆, was prepared according to the literature method of Kashiwabara *et al.* (1982). The aqua complex was recrystallized from aqueous methanol, depositing purple prismatic crystals of the title methanol complex.

Crystal data	
$[Co(C_5H_7O_2)_2(C_{13}H_{13}P)-$	Z = 2
(CH_4O)]PF ₆ ·H ₂ O	$D_x = 1.507 \text{ Mg m}^{-3}$
$M_r = 652.37$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 24
a = 10.904 (3) Å	reflections
b = 13.184 (4) Å	$\theta = 14.8 - 15.0^{\circ}$
c = 10.352 (2) A	$\mu = 0.784 \text{ mm}^{-1}$
$\alpha = 99.74 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 97.24 \ (2)^{\circ}$	Prismatic, purple
$\gamma = 80.06 \ (2)^{\circ}$	$0.50 \times 0.25 \times 0.20 \text{ mm}$
V = 1437.4 (6) A ³	
Data collection	
Rigaku AFC-7R diffractometer	$R_{\rm int} = 0.032$
ω –2 θ scans	$\theta_{\rm max} = 30.03^{\circ}$
Absorption correction: ψ scan	$h = -15 \rightarrow 15$
(North et al., 1968)	$k = -18 \rightarrow 18$
$T_{\min} = 0.769, \ T_{\max} = 0.855$	$l = -14 \rightarrow 0$
8835 measured reflections	3 standard reflections
8405 independent reflections	every 150 reflections
3541 reflections with $I > 2\sigma(I)$	intensity decay: 1.02%
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2]$
R(F) = 0.055	+ 2.2359 <i>P</i>]
$wR(F^2) = 0.167$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.965	$(\Delta/\sigma)_{\rm max} = 0.003$
8405 reflections	$\Delta \rho_{\rm max} = 0.627 \text{ e } \text{\AA}^{-3}$
396 parameters	$\Delta \rho_{\rm min} = -0.817 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bonding geometry (Å, $^{\circ}$).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O5-H5\cdots O3^{i}$	0.82	2.10	2.914 (4)	173

Symmetry codes: (i) 1 - x, -y, 1 - z.

There were positional disorders for four equatorial F atoms (F2, F3, F4 and F5) of the PF_6^- anion over two sites, both of which corresponded to a regular octahedral arrangement with two axial F atoms (F1 and F6). The population of these disordered atoms were assumed to be 0.5. The O atom of water of crystallization was treated as two partial-occupancy isotropic O atoms (O61 and O62). H atoms bound to the O atom were not included in the calculation. All other H atoms were included in the structural calculation by means of a riding model.

Data collection: *Rigaku/AFC Diffractometer Control Software* (Rigaku, 1985); cell refinement: *Rigaku/AFC Diffractometer Control Software*; data reduction: *teXsan* (Molecular Structure Corporation & Rigaku, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); software used to prepare material for publication: *SHELXL97*.

The author thanks Professors Kazuo Kashiwabara (Nagoya University) and Sumio Kaizaki (Osaka University) for valuable discussions.

References

- Dreos, R., Tauzher, G., Vuano, S., Asaro, F., Pellizer, G., Nardin, G., Randaccio, L. & Geremia, S. (1995). J. Organomet. Chem. 505, 135–138.
- Flohr, H., Pannhorat, W. & Retey, J. (1978). *Helv. Chim. Acta*, 61, 1565–1587.
 Kashiwabara, K., Katoh, K., Ohishi, T., Fujita, J. & Shibata, M. (1982). *Bull. Chem. Soc. Jpn*, 55, 149–155.
- Kashiwabara, K., Kita, M., Masuda, H., Kurachi, S. & Ohba, S. (1995). Bull. Chem. Soc. Jp, 68, 883–888.
- Molecular Structure Corporation & Rigaku (1999). *teXsan*. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Co. Ltd, Akishima, Tokyo, Japan.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rigaku (1985). *Rigaku/AFC Diffractometer Control Software*. Rigaku Co. Ltd, Akishima, Tokyo, Japan.